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We extend investigation of one-dimensional solitons in biased photorefractive crystals to long propagation
regimes, where self-trapping over a large number of linear diffraction lengths combines with the progressive
growth of generally distortive spatially nonlocal components. Results indicate that saturation halts the radiative
misshaping of the soliton, which follows that specific bending trajectory along which its evolution is governed
by the same local screening nonlinearity that intervenes in short propagation conditions, where spatial nonlo-
cality has a negligible effect. This finding not only allows the prediction of the curvature and of the relative role
of charge displacement and diffusion, but implies a set of interesting observable effects, such as boomerangs,
counterpropagating and cavity geometries, quasirectilinear and anomalous collisions, along with specific con-
sequences on soliton arrays and on coupling to bulk gratings.
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From their discovery more than a decade ago, photore-
fractive solitonsf1g have represented one of the foremost
instruments in the study of spatial effects in nonlinear optics,
arguably playing—in space—the role that Kerr materials
play in time f2g. From the fundamental perspective, we
should mention the observation of stable one- and two-
dimensional self-trapping in a bulk environment, soliton spi-
ralling f3g, incoherent self-trappingf4g, soliton arraysf5g,
and, from the applicative side, optical steeringf6g, manipu-
lation f7g, second-harmonic and parametric oscillation en-
hancementf8g, and soliton electroactivationf9g, which for-
wards considerable functionality compatible with a fast
electro-optic response.

In this paper we expand the investigation of solitons to
long propagation regimes, where an extended propagation
distanceLz and/or a small soliton widthDx imply large val-
ues of g=Lz/Ld, Ld being the diffraction/nonlinear length
f10g. In particular, we are interested in establishing if self-
trapped propagation can be observed even in this extremesif
compared to most reported experimentsd case, in identifying
the underlying physical mechanisms, and, consequently, the
possible alterations to the standard experimental design.

The heart of the issue is that in its present understanding,
photorefractive self-trapping is believed to be due exclu-
sively to the predominance of the spatially local screening
nonlinearity on a nonlocal component due to charge diffu-
sion and displacementf11g. Whereas the first leads to self-
lensing and counters diffraction, amounting to a saturated
Kerr effect, the second introduces an asymmetric component
that, not participating in countering any process, can evi-
dently accumulate in a long propagation and alter the Kerr-
saturated picture, to the point of interdicting self-trapping.

The role of nonlocal components in soliton formation was
investigated by Carvalhoet al. f12g. The origin of this more

involved responsesif compared to Kerr materialsd lies in the
fact that the nonlinearity is associated to the electro-optic
refractive index modulationDn=−s1/2dn3rE, wherer is the
relevant electro-optic coefficient, andE the electric field re-
sulting from the spatial redistribution of charges photogener-
ated by the optical intensity distributionI sspace-charge
fieldd. The nonlocal effect that stems from charge diffusion is
the direct consequence of a spatially dependentI, which
translates into a component toEsId fandDnsIdg connected to
the gradient ofI. The second nonlocal process due to charge
displacementsor saturationd is associated to the relationship
between the charge densityr and E, r== ·E/«, for which
the dependence ofEsId and henceDnsId is, in general, inte-
grodifferential. In other words, a localized intensity distribu-
tion I, the characteristic soliton trait, renders the local and
nonlocal processesindissoluble, such that the nonlinearity
must be addressed as a whole.

With respect to our present endeavor, the most important
result is that when an appropriate soliton-suppoting external
field E0 is applied, the nonlocal component constitutes a cor-
rection whose effect self-bends the soliton trajectory through
a distortion that accumulatesnonlinearly along the pro-
pagation axis z, according to the scalingdI ~Lz

2/Dx
~Lz

2/ÎLd sfor a Gaussian-like launch beamd f13g. The effect
has been documented in both the one-dimensional and two-
dimensional casesf14g, and accompanies, to a varied degree,
all soliton observations.

One theoretical approach is to attempt a prediction based
on results for the Raman shift in temporal Kerr solitonsf15g,
where nonlocalitysin timed resulting from a delayed re-
sponse leads to an apparently analogous nonlinear propaga-
tion settingf16g. Specializing the nonlocal coupling constant
to the photorefractive effect, we find that, contrary to the
Raman casesin which distortions can be negligiblef16gd,
behavior depends in a nontrivial manner on the particular
soliton parameters. More importantly, predictions corrobo-
rate the conclusion that this accumulation fundamentally al-*Electronic address: eugenio.delre@aquila.infn.it
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ters the nature of the nonlinearity. In particular, long propa-
gation regimes should not support localized waves with
particlelike properties, and solitons themselves are super-
seded by Airy waves. This picture, however, is based on
conditions in which nonlinearity is unsaturated. This, along
with the absence of the correct relationship of the nonlocal
coupling constant on the parameters of the soliton, and of a
term describing charge displacement, render the Raman-
analogous approach ineffective.

Detailed experiments aimed at establishing a quantitative
comparison to the local screening nonlinearity have been
systematically reported by Koset al. for ferroelectric SBN
sstrontium-barium-niobated f17g. The quantitative discrep-
ancy observed in some experimental conditions has been
specifically attributed to the coupling of spurious light into
the soliton, a consequence of the beam geometry. In particu-
lar, a divergence from the model due to the nonlocal compo-
nent of the response wasexcludedfor saturated conditions,
since results would converge to predictions of the local
model for increasing values ofg sexperiments reported for
g=3 and 7d.

Therefore, although no evidence of soliton decay through
asymmetric radiation has been reported, and, as indicated by
Singhet al. f12g, the distortion in soliton trajectory is appar-
ently not accompanied by emission, yet the validity of the
local screening soliton model appears as a consequence of a
limited solitonic manifestation, with low values ofg.

We begin our approach to the long propagation regime by
introducing a model tuned to actual experimental conditions,
this including at once saturation, charge diffusion, charge
displacement, and coupling constants that are correctly de-
pendent on physical parameterssas, for example, in Ref.
f12gd.

In the reduced one-plus-one-dimensional model, photore-
fractive nonlinearity is generated by the mutual coupling of
the optically driven electrostatic fieldEsId and beam propa-
gation, described by the parabolic equation for the slowly
varying partAsx,zd of the monochromatic optical fieldsI
= uAu2d, through the index patternDnsId induced byE. To
evaluateEsId, we cast the electrostatic problem in normal-
ized units Y;E/E0, E0 being the external bias field,Q
;s1+I / Ibd, Ib being the artificial background illumination,

the transverse coordinatej̃;x/xq, wherexq;s«0«rE0/Naqd
is the saturation scale,Na the concentration of acceptor im-
purities,q the electron charge. The electron concentrationN,
Na, and the donor concentrationNd obey the hierarchyN
!Na!Nd, andY must satisfy the formally explicit equation
f18g

Y =
g

Q
− a

Q8

Q
+

g

Q
Y8 + a

Y9

1 + Y8
, s1d

where the constanta;skbT/qE0d /xq is of the order of unity
stypically ,2–5d, kb is the Boltzmann constant,T the crystal
temperature, and the constantg.1. Primes represent the

derivationd/dj̃. For typical micron-sized solitons with inten-
sity full width at half maximumsFWHMd Dx,10 mm, xq
,0.1 mm, andh=xq/Dx,0.01 is an appropriate smallness

parameter. Equations1d can therefore be iteratively solved to
osh2d as

Y =
1

Q
− a

Q8

Q
−

Q8

Q
S 1

Q
D2

. s2d

The local first term 1/Q is the drift component, and leads
directly to the saturated nonlinearityDn~1/s1+I / Ibd which
is associated to screening self-trapping, neglecting all orders
in h. The second and third terms ofoshd are, respectively,
the diffusion field and the charge displacement field.

The resulting nonlinear propagation equation describing
paraxial optical one-dimensional phenomenology is

i
]w

]z
+

]2w

]j2 −
w

1 + uwu2
+ a

uwu]uwu/]j

1 + uwu2
w + b

uwu]uwu/]j

s1 + uwu2d3w = 0,

s3d

where the fulloshd version from Eq.s2d is considered. The
wave is expressed in terms ofwsj ,zd, where A=wÎIb, j
=x/x0, and z=z/z0. Here x0=1/Î2k/z0, z0=n/ skDn0d, k
=2pn/l, and Dn0=s1/2dn3rE0, l being the optical wave-
length. The nonlocal parameters area=2axq/x0
=2kbT/ sqE0x0d andb=2xq/x0.

Our first goal is to clarify soliton behavior described by
Eq. s3d through a numerical investigation by means of the
split-step Fourier methodsor beam propagation methodd. To
conciliate what appear to be strictly soliton manifestations
predicted, for example, in Ref.f12g with Airy-like waves
predicted in Ref.f16g, we simulated the evolution of aDx
=7-mm beam in aLz=9.6-mm propagation, corresponding to
a long propagationg.15 condition. Crystal response is cho-
sen in close conformity with room temperature ferroelectric
SBN, i.e.,«r =103, Na=531022 m−3, n=2.5, r =200 pm/V,
andl=0.5 mm. Results for the transition from unsaturated to
saturated conditions are shown in Fig. 1, for increasing val-
ues of intensity ratiou0

2= Ip/ Ib, where Ip is the peak beam
intensity. For low values ofu0 self-trapping does not emerge
for any value of external biasE0 sand henceDn0d, and con-
siderable nonsoliton effects predicted in Ref.f16g appear
fFigs. 1sad and 1sbdg. However, contrary to what therein
stated and in conformity with the studies of Ref.f12g, as
saturation sets in, a regime which best reflects the greater
part of experiments, self-trapping is predicted for a specific
external bias ofE0.4.2 kV/cm. Here, as indicated in Fig.
1scd, the localized wavedoes notdissolve through radiation.
This behavior is observed for all saturated conditions, i.e.,
for u0ù1. Note that the absence of unsaturated screening
solitons depends on the values ofa and b, which in turn
depend also on crystal parameters. For our description of
SBN, in long propagation conditionsno Kerr regime exists, a
picture that fits well with what is already knownsalthough
sometimes attributed to Kerr bulk instabilityd. However,
comparing with the effects of Raman shiftf15,16g, it is pos-
sible that, even with the elevated values ofE0 required to
self-trap unsaturated solitons, an appropriate crystalsin a
given temperature regiond may be found with considerably
low values ofb such as to allow a quasi-Kerr nonlinearity.
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The first intriguing circumstance appears when we extend
our studies to find the existence conditions of self-trapped
sand, of course bendingd beams. The surprising result is that,
in saturated conditions, the corresponding existence curve, in
the su0,Djd plane, hardly varies changing, and for example
increasing,g. More importantly, it is almost unvaried with
respect to the existence curve of thelocal treatmentf11g, for
which a and b are artificially set to zero. For example, in
Fig. 2sad, numerical results attained with the shooting tech-
nique fusing the ordinary nonlinear Eq.s4d introduced be-
lowg for a g.13 indicate that nonlocal effects apparently do
not influence existence conditions, as observed in experi-
mentsf17g. Note that this does not occur because the nonlo-

cal components play no role. In fact, these make the beam
follow a parabolic trajectorysas discussed belowd, whose
respective values of curvatureB=xs/Lz

2, xs being the beam
lateral shift at the output, are shown in Fig. 2sbd.

To understand this behavior we follow the established
solitonic analysis by self-consistently imposing a symmetry
to the system on consequence of propagation invariance, re-
ducing the nonlinear Eq.s3d to an ordinary differential equa-
tion. The built-in Galileian-like symmetries, originally
implemented by Gagnonet al. f19g to address soliton self-
frequency shift in Kerr-like materials, indicate that the reduc-
tion occurs in anacceleratedtransverse frame, as discussed
in Ref. f16g. Solitons will thus be of the typewsj ,zd
=usJdexph−izfsb2/6dz2−sb/2dj+qgj, whereu is real,J=j
−sb/2dz2, andq andb are matching parameters. For a local
nonlinearity, the transformation is limited to a frame with
zero acceleration, i.e., withb=0, leading to the standard con-
dition wsj ,zd=e−iqzusjd. The transformation doesnot a pri-
ori imply that solitons formf16,20,21g.

Implementing the transformation, the ordinary nonlinear
equation

uJ,J + qu− Sb

2
DJu −

u

1 + u2 + a
u2uJ

1 + u2 + b
u2uJ

s1 + u2d3 = 0

s4d

is obtained, where subscripts identify derivatives. A first
straightforward observation is that the transformation intro-

FIG. 1. Transition to a solitonic propagation from unsaturated conditionssad andsbd, for which theDx=7-mm beam does not self-trap for
any value ofE0. The onset of self-trapping occurs at approximatelyu0.0.6, for which anE0=4.2 kV/cm traps the beam along theLz

=9.6-mm propagationsg=15d scd. Top row are the respective top views of the intensity distribution, bottom row are the inputsdashed lined
and outputssolid lined intensity profiles.

FIG. 2. Invariance of existence conditions even for a long
propagation regime ofg=13, for aDx=12-mm beam propagating in
a Lz=20-mm samplessquaresd with respect to the local existence
curve slined sad; validity of the analytical prediction forBsu0@1d
sbd.
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duces a characteristic linear transverse phase chirp
−sb/2dJu. Considering, for the moment, only charge diffu-
sion fi.e., b=0 in Eq. s4dg, the nonlocal term, for the satu-
rated si.e., u0@1d regime, can be approximated to
au2uJ / s1+u2d.auJ. Apart from beam tails, the soliton bell
shaped structure is a quasi-Gaussianssee, for example, Ref.
f22gd, andu.u0 exps−J2/J0

2d sJ0 deriving fromDxd, with
uJ.−s2J /J0

2du. Approximations are warranted by the fact
that the term is a correctiveoshd. Thus Eq.s4d manifests a
property which results particularly enlightening. The nonlo-
cal part gives approximately itself a linear phase chirp: ex-
actly the result of the symmetry transformation. Thus, if we
choose to describe the beam in the system in whichb
=−4a /J0

2, the nonlinear propagation equation reduces to

uJ,J + qu−
u

1 + u2 = 0, s5d

which is none other than the screening equation obtained by
fully neglecting the nonlocal componentsf11g.

This at once forwards an explanation to the existence-
condition invariance illustrated in Fig. 2sad, which, however,
must be testedsas usual, the soliton prediction is self-
consistentd. If the reasoning is physically sound, we have an
analytical approximation to the actual soliton trajectory
which can be quantitatively tested against numerical find-
ings. In Fig. 2sbd the calculated asymptotic parabolic curva-
ture Bsu0@1d=n2rkbT/ sv0

2qd, wherev0 is the beam width
(i.e., Dx=f2 lns2dg1/2v0), is compared with simulation re-
sults. The good agreement forms the confirmation of our
reasoning.

The approximate treatment indicates that the leading term
in the new description of the self-bent beam supports a soli-
ton, with its propagation invarianceand its particlelike mani-
festations. Moreover, it isthe very same soliton that would
appear in the absence of nonlocal processes, with the very
same existence conditions, albeit along a parabolic trajectory.

Therefore we find the exact opposite to an intrinsic limi-
tation in long propagation solitonic regimes: in conditions in
which solitons emerge,the full nonlinearity is actually local.
The soliton, to form, follows that trajectory that allows for
this circumstance, i.e., that for which the system of reference
is transformed so as to allow for a saturated Kerr manifesta-
tion. In this we identify the intrinsically “local” nature of
photorefractive solitons, clarifying the peculiarity observed
in experiments and detailed in the numerical results. The
circumstance is evidently associated to the highly selective
sbut stabled conditions that lead toself-trapping. A different
perspective, as for example held in Ref.f12g where the focus
is on general beam behavior, sees bending as a further con-
trol parameter, which is not rigidly fixed by launch condi-
tions, as instead occurs for solitons. In this case, bending can
be implemented for a controllable routing, but it cannot lead
to self-trapping, since it implies az-evolving beam. The phe-
nomenon is analogous to self-deflectionf23g.

Note the physical distinction between beam fanningf24g
and bending induced by spatial nonlocality for an extended
and, respectively, a confined beam. For the finite size of the
propagating soliton, fanning does not intervenesthere are no

radiating wavesd, as the absence of relevant scattering, a con-
sequence of Eq.s5d, shows. Diffusion, conversely, introduces
an approximately linear transverse chirp that rigidly shifts
the wave-vector distribution, without altering its shape, such
that energy is coupled from the initial modes to different
ones that are themselves guided and part of the soliton,
which congruently rotates in space. Emblematic of this is the
fact that the actual numerical aperture of the soliton beam,
which remains unvaried during propagation, influences the
value of B, but not the overall beam inclinationu, which
scales withLz. In so much that the prediction transfers to the
higher two-plus-one-dimensional soliton case, this fact indi-
cates that a soliton-based circuit, even in a realization that
involves long propagation regimes, can be efficiently
coupled out from Ref.f25g and back into a fiber-based cir-
cuit, the butt coupling being appropriately aligned along the
parabola.

The entire reduction from Eq.s4d to Eq. s5d indicates that
nonlocality bends the beam trajectory, but, on consequence
of saturation, this does not lead to radiation loss or distortion,
to the point that even the existence conditions of self-
trapping remainunalteredfrom those of a short propagation
sunbendingd regime. From an intuitive perspective, in the
unsaturated limit discussed in Refs.f15,16g, the induced
guiding index of refraction pattern is not capable of captur-
ing all the light in the diffracting beam when the effects of
curvature intervene. With an elevated saturation, the more
steplike index pattern can trap a wider angular spread, and
even though a curvature in the trajectory is present, no light
is emitted, as occurs for most macrobends in step-index fiber.

Apart from these basic considerations, the validity of soli-
ton propagation in long propagation regimes allows us to
predict a series of interesting and useful phenomena that not
only lie yet unobserved, but could have been previously rea-
soned inaccessible.

A first consequence is on what we can expect of counter-
propagating schemes. The incoherent and coherent interac-
tion of counterpropagating waves in a photorefractive mate-
rial form part of the fundamental phenomenology associated
to the field, in the first case leading to transverse instability,
in the second, to wave mixingf24g. A different effect has
been predicted for counterpropagating solitonsf26g, which
amounts to a delocalized collision that would allow a driven
self-alignment of two micron-guided waves. In order for the
effect to emerge, a strong solitonic regime is required, and
the consequent elevated values ofg lead to self-bending.
This translates into an apparent impossibility of superimpos-
ing the trajectories, localizing the interaction into a large
angle si.e., elasticd collision. Our results on the underlying
symmetry indicate that when self-trapping occurssand not
for the general case described in Ref.f12gd, no distortion
intervenes along the propagation axis “tagging” the direction
of propagation, and, if the two beams are launched so as to
lie on the same parabolic trajectory, they will superimpose
throughout, leading to the predicted nonlocal interaction. A
similar condition has been in part inspected by Rotschildet
al. f27g.

The same symmetry is also at the basis of what we can
term “soliton cavities.” The absence of a propagation direc-
tion distortion, a consequence of the validity of Eq.s5d,
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means that these can be achieved by appropriately launching
the beam and positioning the reflecting end mirrors. An em-
blematic basis for a cavity is that illustrated in Fig. 3sbd,
which represents a “solitonic boomerang,” the most symmet-
ric of photorefractive soliton manifestations. By launching a
tilted beam, it self-bends and is self-reflected during the trap-
ping process. For a specific tilt andLz, a given soliton leads
to a process which is fully symmetric with respect transverse
z=Lz/2 plane. A solitonic boomerang could not exist where a
propagation distortion were to physically accumulate during
propagation. In the example illustrated in Fig. 3sbd, the boo-
merang forms for theDx=12-mm beam atu0=4 and input
angleu=7.5 mrad, and anE0=1.2 kV/cm, for a propagation
distance ofLz=29 mm. The maximum lateral shift of 53mm
is attained half way along the parabolic trajectory.

A second consequence concerns soliton collisions, which
form a substantial part of investigated phenomenologyf28g.
Since interaction depends principally on the relative angle
ur =u1−u2 between the propagating solitons, self-bending
will substantially change the nature of the interaction. Spe-
cifically, since the single beams follow parabolic trajectories,
ur tends todiminish along propagation, rendering the satu-
rated event ever less elastic. Only for the case in which the
beams are launched parallel this does not occur. As shown in
Fig. 4sad, for a launchur0=0 the two trajectories are parallel
swhen the interaction is weakd, and tend to remain such. This
does not generally correspond to a collisionsthe beams,
however, evolve progressively closerd.

For ur0Þ0, extended soliton propagation can therefore
lead to characteristic events, such as those described in Figs.
4sbd and 4scd, which refer to collisions between solitons in
conditions of self-trapping of Fig. 3. The outcome of the
collision does not solely depend onur0 at launch, but also on
the intersoliton distance: the larger the distance the farther
into propagation the collision occurs, and the lower the rela-
tive collision angleuc at the point of intersection. The effect
is extraneous to a saturated local nonlinearityfsee Figs. 4sdd
and 4sedg.

The question thus arises as to how we can reproduce “rec-
tilinear” si.e., ur0.ucd collisions in photorefractives. Given
that the solitons actually form without distortion along a pa-
rabola, we can “hop” onto the trajectory along its quasias-
ymptotic tails, as shown in Fig. 5sad. For a given propagation
distanceLz the evolution ofu will be negligible. Thus we can
achieve a given value of collisionur0.uc seven for large

values ofgd by having the two identical solitons hop on in
different portions of the tails. In Fig. 5 an incoherentsbd
fcoherentscdg collision for a local model, in whicha andb
are artificially set to zero, is compared to the incoherentsdd
fcoherentsedg collision for the full model. For the given tail
scheme no discernible difference emergesfas instead occurs
for the symmetricu1=−u2 scheme of Figs. 4sbd and 4sedg.

In some cases, however, the consequences are such as to
disrupt some physical mechanism, rendering it inaccessible
to observation in the long propagation solitonic limit. A first
important class of effects is associated with the self-

FIG. 3. The highly symmetric formation of a solitonic boomer-
ang for a 29-mm propagationsg=18d of a Dx=12-mm beam, with
an initial launch angleu=7.5 mrad with respect to thez axis. Top
view of angled diffraction without applied fieldsad; and with the
trappingE0=1.2 kV/cm su0=4d sbd.

FIG. 4. A collisional anomaly due to bending. For a parallel
launchsu1=u2=0d, the mutually incoherent 12-mm beams, initially
120 mm apart, travel parallel along their parabolic trajectorysad.
Whenur0=26 mradsu1=−u2d and the two beams are launched at a
distance of 25mm, the collisionaluc.ur0 results larger than the
critical angle that leads to a bound soliton pairsbd. If the beams are
launched at a distance of 120mm, the intersection point is farther
into propagation, anduc,ur0, resulting lower than the critical
angle: the two beams lock togetherscd. For a saturated local non-
linearity uc.ur0 both for a 25-mm sdd and a 120-mm launchsed.

FIG. 5. Quasirectilinear collisions in long propagation regimes
of two 7-mm beams with u0=4.5, and trapping fieldE0

=3.2 kV/cm. Parallelu1=u2=12-mrad launch, following thequa-
siasymptoticportion of the parabolic trajectorysintersoliton dis-
tance 90mmd sad; comparison between a local saturated incoherent
collision for u1=17 mrad andu2=4.3 mradsbd; a coherent onescd;
and, respectively, the same for the photorefractive nonlinearitysdd
and sed. No discernible difference emerges along theLz=14.4-mm
propagation.
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enhancement of electronic nonlinearity: here the intrinsic
walkoff must inevitably lead second-harmonic-generation
and parametric conversion out of phase matchingf8g. Simi-
larly for the interaction of solitons with larger-period struc-
tures, where bending can bring the wave into and out of
Bragg matching. The condition can once more be mitigated
through a tilted schemefsee Fig. 5sadg. Things are quite dif-
ferent for a soliton array: hereall the identical solitons self-
bend, leading to a rigidly rotating pattern, the basic signature
that distinguishes it from interferometrically generated struc-
tures. Whereas in the first, the beams propagate indepen-
dently and accumulate the self-bending chirp, in the second,
the interferograms have no propagation, being all coupled by
the extended interfering waves, and hence do not suffer self-
bending.

All numerical findings take into account the full model of
Eq. s4d, i.e., both charge diffusion and charge displacement,
whereas the basis of our understanding has been attained
neglecting the latter. This is a valid assumption for most
configurations, such as those illustrated in Figs. 2–4, even for
larger values ofg, and holds for all soliton conditions in
which E0

2!kbTNau0
4/ s«0«rd, that in our case translates toE0

!1.5u0
2 kV/cm.

In itself, the charge displacement termbu2uJ / s1+u2d3

does not directly share the same scaling as the diffusive one:
it once again introduces a chirp, but distorted by the 1/Q2

factor. One practical manner to slightly enhance its influence
is to investigate tighter solitons which, for the same value of
u0

2, leads to an increase ofE0. Results for theDx=7-mm case
are shown in Fig. 6sthe same condition was also imple-
mented in Fig. 1d. In particular, the existence curve is still
unvariedsad, and self-trapping of the highly diffracting beam
scd follows once again a parabolic trajectorysdd–sfd, for dif-
ferent values ofu0. However, in this case, the curvature is

due to both termssaÞ0,bÞ0d, and the analytic prediction
at the basis of Eq.s5d, which allowed the evaluation of bend-
ing results in conditions of Fig. 2, leads now to an underes-
timated value ofBsu0@1d sbd. Concluding, charge displace-
ment does not qualitatively alter our scheme, and is in
general a small correction.

A final speculation in this hereto unexplored solitonic re-
gime of long propagation is that the beam trajectory could
itself lead, on consequence of the anisotropy of the electro-
optic host, to an effective electro-optic coefficientr, and
hence a nonlinearity, that changes during propagation, caus-
ing a form of nonlinear diffraction. The effect, however, is
mitigated by the parabolic form of the trajectory, for which
the angle of rotation of the beamdu for the propagation from
L to L+dL decreases inL according to du /dL.s1
+4B2L2d−1.

By implementing an analytical approximation of the non-
linear propagation equation based on its natural symmetries,
we have shown that one-dimensional photorefractive solitons
in biased crystals are supported by a local saturable nonlin-
earity which is a result of both local and nonlocal spatial
processes, nonlocality being relegated to determining a non-
linear change in soliton trajectory. This allows the identifica-
tion of the mechanism that supports soliton formation in the
long propagation regime, providing, in some conditions, an
explicit analytical prediction of the soliton trajectory and ex-
istence points, along with a set of interesting observable ef-
fects.
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